

Erratum

Erratum to: Catalytic destruction of halogenated air toxins and the effect of admixture with VOCs ¹ (Catalysis Today, 30 (1996) 99–105)

H. Windawi, Z.C. Zhang *,2

Environmental Products, Johnson Matthey Catalytic Systems Division, Wayne, PA 19087, USA

The title of this paper should read: Catalytic destruction of halogenated air toxics and the effect of admixture with VOCs.

The captions of Figs. 3–6 should read:

Fig. 3. (A) The light-off curves of trichloroethylene (TCE) at different TCE/C_2H_4 concentration ratios. (B) Light-off curves of ethylene (2000 ppm) at different trichloroethylene (TCE) concentrations (as indicated in the figure).

Fig. 4. The light-off curves of trichloroethylene (TCE, in 200 ppm) in admixtures with

various VOCs (species and corresponding concentrations are indicated in the figure).

Fig. 5. The light-off curves of toluene and methyl bromide in their admixture. In the absence of methyl bromide, toluene oxidation is complete below 200°C.

Fig. 6. Recovery of toluene oxidation activity by removal of bromide. 100 ppm toluene in air.

Some values in Table 2 should be bold highlighted:

Table 2. Free energy and equilibrium constant of bond dissociation for C_1 chlorocarbons

T (°C)	$CCl_4 \rightarrow CCl_3 + Cl$		$CHCl_3 \rightarrow CHCl_2 + Cl$		$CH_2Cl_2 \rightarrow CH_2Cl + Cl$		$CH_3Cl \rightarrow CH_3 + Cl$	
	ΔG	K	ΔG	K	ΔG	K	ΔG	K
0	62.1	2.1E - 50	61.7	4.3E - 50	70.7	2.5E - 57	75.6	3.0E - 61
100	58.5	5.8E - 35	58.2	8.6E - 35	67.4	3.3E - 40	72.6	2.9E - 43
200	54.8	4.8E - 26	54.6	6.2E - 26	64.0	2.7E - 30	69.5	8.0E - 33
250	53.0	7.3E - 23	52.8	9.1E - 23	62.3	9.7E - 27	67.9	4.3E - 29
300	51.2	3.1E - 20	50.9	3.8E - 20	60.5	8.3E - 24	66.3	5.3E - 26
350	49.4	4.9E - 18	49.1	5.9E - 18	58.8	2.4E - 21	64.6	2.1E - 23
400	47.5	3.7E - 16	47.3	4.4E - 16	57.0	3.1E - 19	63.0	3.5E - 21
500	43.9	3.8E - 13	43.6	4.7E - 13	53.5	7.6E - 16	59.7	1.3E - 17
600	40.3	8.2E - 11	40.0	1.0E - 10	50.0	3.2E - 13	56.4	7.5E - 15

^{*} Corresponding author.

¹ SSDI of original article 0920-5861(95)00331-2.

² Present address: Akzo Nobel Chemicals, Inc., 1 Livingstone Ave., Dobbs Ferry, NY 10522, USA.